
The Stata Journal

Editors

H. Joseph Newton

Department of Statistics

Texas A&M University

College Station, Texas

editors@stata-journal.com

Nicholas J. Cox

Department of Geography

Durham University

Durham, UK

editors@stata-journal.com

Associate Editors

Christopher F. Baum, Boston College

Nathaniel Beck, New York University

Rino Bellocco, Karolinska Institutet, Sweden, and

University of Milano-Bicocca, Italy

Maarten L. Buis, WZB, Germany

A. Colin Cameron, University of California–Davis

Mario A. Cleves, University of Arkansas for

Medical Sciences

William D. Dupont, Vanderbilt University

Philip Ender, University of California–Los Angeles

David Epstein, Columbia University

Allan Gregory, Queen’s University

James Hardin, University of South Carolina

Ben Jann, University of Bern, Switzerland

Stephen Jenkins, London School of Economics and

Political Science

Ulrich Kohler, University of Potsdam, Germany

Frauke Kreuter, Univ. of Maryland–College Park

Peter A. Lachenbruch, Oregon State University

Jens Lauritsen, Odense University Hospital

Stanley Lemeshow, Ohio State University

J. Scott Long, Indiana University

Roger Newson, Imperial College, London

Austin Nichols, Urban Institute, Washington DC

Marcello Pagano, Harvard School of Public Health

Sophia Rabe-Hesketh, Univ. of California–Berkeley

J. Patrick Royston, MRC Clinical Trials Unit,

London

Philip Ryan, University of Adelaide

Mark E. Schaffer, Heriot-Watt Univ., Edinburgh

Jeroen Weesie, Utrecht University

Ian White, MRC Biostatistics Unit, Cambridge

Nicholas J. G. Winter, University of Virginia

Jeffrey Wooldridge, Michigan State University

Stata Press Editorial Manager

Lisa Gilmore

Stata Press Copy Editors

David Culwell, Deirdre Skaggs, and Shelbi Seiner

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book

reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository

papers that link the use of Stata commands or programs to associated principles, such as those that will serve

as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go

“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate

or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to

a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users

(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers

analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could

be of interest or usefulness to researchers, especially in fields that are of practical importance but are not

often included in texts or other journals, such as the use of Stata in managing datasets, especially large

datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata

with topics such as extended examples of techniques and interpretation of results, simulations of statistical

concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-

ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),

Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone

979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $ 98 1-year subscription $138

2-year subscription $165 2-year subscription $245

3-year subscription $225 3-year subscription $345

1-year student subscription $ 75 1-year student subscription $ 99

1-year institutional subscription $245 1-year institutional subscription $285

2-year institutional subscription $445 2-year institutional subscription $525

3-year institutional subscription $645 3-year institutional subscription $765

Electronic only Electronic only

1-year subscription $ 75 1-year subscription $ 75

2-year subscription $125 2-year subscription $125

3-year subscription $165 3-year subscription $165

1-year student subscription $ 45 1-year student subscription $ 45

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may

be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX

77845, USA, or emailed to sj@stata.com.

®

Copyright c© 2014 by StataCorp LP

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,

fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, , Stata Press, Mata, ,

and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2014)
14, Number 2, pp. 342–362

From Stata to aML

Sara Ayllón
Department of Economics and EQUALITAS

Universitat de Girona
Girona, Spain

sara.ayllon@udg.edu

Abstract. In this article, I explain how to exploit Stata to run multilevel multi-
process regressions with applied maximum likelihood (aML). I show how a single
do-file can prepare the dataset, write the control files, input the starting values,
and run the regressions without the need to manually open the aML’s Command
Prompt window. If desired, results can be brought back to Stata for postesti-
mation. I also provide an example that illustrates how well Stata and aML work
together.

Keywords: st0340, aML, file open, file write, multilevel multiprocess models

1 Introduction

In this article, I show how to use Stata to run multilevel multiprocess models with
applied maximum likelihood (aML).1 The aML statistical software has three main ad-
vantages. First, it easily handles three or more data levels that can be mixed and
matched as desired. Second, it is able to jointly fit models with two or more different
outcomes or data structures (for example, a probit together with a hazard regression).
Third, it makes it easy to program complex error structures.2

However, aML is not a user-friendly program. It requires the preparation of the
dataset using a third-party software package. aML needs two different control files: one
to upload the data and another to run the regressions. It also requires the researcher
to typeset the starting values, which is tedious and time consuming, especially when
working with a long list of explanatory variables or in comparative analysis. Finally,
aML needs the starting values to be assigned in the same order as the regressor set, which
introduces the potential for user error when assessing different model specifications.

1. aML can be downloaded free of charge from http://www.applied-ml.com/. Note that aML is not
supported for Mac computers.

2. The command cmp by Roodman (2011) shares some of the features of aML. However, and as
admitted by Roodman, aML is substantially broader than cmp. aML allows full simultaneity in
systems of equations. It can also account for random coefficients and random effects at different
cluster levels, and it offers a wider range of model types (for example, logit, multinomial logit,
Poisson, exponential hazard models, etc.). The gllamm command by Rabe-Hesketh et al. (2004)
includes some of the mentioned features but only for single-equation models.

c© 2014 StataCorp LP st0340

S. Ayllón 343

In what follows, I show how it is possible to write a single Stata do-file that can
prepare the dataset, write the control files, automatically input the starting values, and
call aML using the shell command to upload the data and run the regressions.3 At
the end of the process, the aML user obtains the output file with the results without
the need to even open the Command Prompt window used by aML. Also because Stata
automatically generates all the control files, writes the list of explanatory variables, and
typesets the starting values, there is no margin for typo errors. Moreover, working with
a single Stata do-file permits changes in the model specification without the need to
open and change each control file. I also show how to bring aML results back to Stata.
In the last section of the article, I illustrate the process with an example that uses a
dataset contained in Stata.

2 From Stata to aML, step by step

To exemplify the different steps we need to go through, let’s imagine that we want to
run a simultaneous multiprocess model in aML composed of two random-effects probits
with a dataset that contains two levels of data.4 For example, let’s imagine a panel
that has information on individuals (identified by pid) during several waves (year).
The model controls for observed and unobserved heterogeneity while also permitting
individual-specific effects to be freely correlated across equations. (aML easily deals
with more complicated models, but I shall keep it simple for illustrative purposes.)

2.1 Data preparation

First, we need to write the list of explanatory variables that will be entered in the
estimations. Because aML needs to know which variables are at which level, we have to
organize them. In our case, we distinguish between time-invariant (level 1) and time-
varying (level 2) variables.5 We create a local macro in Stata that contains the name of
the explanatory variables in each level. Assuming that the different regressions contain
the same time-invariant variables but different time-varying variables, we can create
level 1 for both regressions, level 2a for the first equation, and level 2b for the second
equation:

3. Other commands connect Stata with software packages for running multilevel models. See, for
example, the modules runmlwin by Leckie and Charlton (2013) for MLwiN, hlm by Reardon (2006)
for HLM, runmplus by Jones (2010) for MPlus, or bugsutils by Greenwood (2006) for WINBUGS.

4. In the following section, I will show a variation of the code with a model that jointly estimates a
random-effects linear regression together with a probit.

5. Note that in aML, level 1 is the highest level, which is the level that contains the most aggregated
data. In a dataset with information on municipalities in regions of different countries, level 1 would
be the countries, level 2 the regions, and level 3 the municipalities.

344 From Stata to aML

local level1 ""
local level1 "`level1´ ivar1"
local level1 "`level1´ ivar2"

local level2a ""
local level2a "`level2a´ ivar3"
local level2a "`level2a´ ivar4"

local level2b ""
local level2b "`level2b´ ivar3"
local level2b "`level2b´ ivar5"

For example, ivar1 could be the time-invariant explanatory variable female. Note
that one is able to easily omit the independent variables from the estimation by simply
typing * in the appropriate line. For example, to see how the results would change when
leaving the independent variable 4 out of the final regression, * should be added at the
beginning of the sixth line above: *local level2a "‘level2a’ ivar4". The do-file
we are building automatically takes the variable out of the regressor set and the list of
starting values.

Variable names in aML are limited to eight characters, so it is important to keep
them short in Stata as well. Names are also case sensitive and should not start with an
underscore (), because variables that begin with this symbol are automatically created
by aML. Also aML does not support character-string variables.

Second, we need to consider that aML does not accept missing values or variable
labels. A few lines and a loop can make sure of that. Moreover, aML works faster if we
keep only those variables that are strictly necessary. In what follows, dvar1 and dvar2

refer to the dependent variables.

keep pid year dvar1 dvar2 `level1´ `level2a´ `level2b´
label drop _all
foreach var of varlist `level1´ `level2a´ `level2b´ {

drop if `var´==.
}
drop if dvar1==.
drop if dvar2==.
save dataset.dta, replace

The dataset can be saved at this point for later use (see section 2.4 below).

Once there are no missing values left in our dataset, we run separate regressions
in Stata that will allow us to save the starting values that aML requires to initialize
the estimations. The following code saves the starting values in a .txt file (which will
be deleted at the end of the process), the standard deviation of the random effect in
another .txt file, and the variables list in a .dta file.6 It is very important in aML for
the starting values to be assigned in the same order as the regressor set, because the
names of the parameters are unimportant but the order in which they are specified is
important. That is, when a parameter is deleted or included, the control files need to
be modified accordingly. In our case, the do-file automatically takes this into account,
thus avoiding any potential error.

6. Note that estout must be installed. estout was created by Jann (2005) for producing regression
tables from stored estimates. See also Jann (2007).

S. Ayllón 345

The code for the two separate random-effects models reads as follows:

xtprobit dvar1 `level1´ `level2a´, i(pid)
estimates store m1
estout m1 using sv1.txt, replace style(tab) order(_cons) mlabels("") collabels("")
generate eps1=`e(sigma_u)´
outfile eps1 using eps1.txt if _N==_n, replace

preserve
clear
insheet using sv1.txt
drop if v2==.
drop v2
drop if v1=="_cons"
format v1 %15s
save sv1.dta, replace
restore

xtprobit dvar2 `level1´ `level2b´, i(pid)
estimates store m2
estout m2 using sv2.txt, replace style(tab) order(_cons) mlabels("") collabels("")
generate eps2=`e(sigma_u)´
outfile eps2 using eps2.txt if _N==_n, replace

preserve
clear
insheet using sv2.txt
drop if v2==.
drop v2
drop if v1=="_cons"
format v1 %15s
save sv2.dta, replace
restore

Note that order(cons) obliges the constant to be the first variable in the list of co-
variates, as required by aML. The text between preserve and restore saves the list of
parameters that will have the same name as the variables (thus avoiding confusion).

Third, we will outfile the data as a .txt file that is easily read by aML given that
it requires the data to be in ASCII (raw text) format. aML will convert the data into
aML’s binary format with the raw2aml command. The data need to be sorted by the
variable that reports level 1 (in our case, the individual pid) and level 2 (year). When
outfiling the data, the level 1 variable must always be the first in the list.

Data can be easily organized into different data structures for each process to be
estimated. Each data structure may have different levels, different explanatory variables,
different samples, etc. For example, we may wish to jointly fit one model for males and
another for females. If one needs to restrict the sample, this should be done before
outfiling it.7 In the example, there was no need to create two data structures; I have
only done so for illustrative purposes.

7. Remember, if we restrict the sample, we also need to do so when running the separate regressions
and saving the starting values.

346 From Stata to aML

The variable structure always has to be the second variable in the list when outfiling
the data. (If there are more than two levels of data, add after structure the name of
the variables that tell aML how many subbranches there are.)

Though optional, I also create an ID file that links the different ASCII files as one
and tells aML about all possible IDs if the different data structures contain different
samples. Thus I outfile the person identifiers once sorted by the level 2 variable (and
other subbranch variables if the data contain more than two levels). If using very long
identifier numbers, we need to make sure that they are in a format that can be fully read
by a .txt file. One can easily change the format of the identifier if needed (for example,
format pid %13.0g for person identifiers that contain fewer than 13 numbers).

generate structure = 1
sort pid year
outfile pid structure `level1´ `level2a´ dvar1 using data1.txt, wide comma replace
replace structure = 2
sort pid year
outfile pid structure `level1´ `level2b´ dvar2 using data2.txt, wide comma replace
keep pid year
sort pid year
outfile pid using id.txt, wide comma replace

Finally, we can start writing the control files that aML requires to upload the data. To
do this, we will use the commands file open and file write (see Gini and Pasquini
[2006]). Let’s start with the file data.r2a that uploads the data in aML. It must contain
the names of the ASCII input files that we previously outfiled and the level hierarchy of
the explanatory variables that have been used. Outcome variables may be specified at
any level.

clear
file open data using data.r2a, write replace
file write data "ascii data files = data1.txt" _n
file write data " data2.txt" _n
file write data ";" _n
file write data _n
file write data "id file = id.txt;" _n
file write data _n
file write data "level 1 var = " _n
file write data "`level1´" _n
file write data ";" _n
file write data _n
file write data "data structure = 1;" _n
file write data _n
file write data "level 2 var = " _n
file write data "`level2a´" _n
file write data "dvar1" _n
file write data ";" _n
file write data _n
file write data "data structure = 2;" _n
file write data _n
file write data "level 2 var = " _n
file write data "`level2b´" _n
file write data "dvar2" _n
file write data ";" _n
file close data

S. Ayllón 347

Note the semicolon (;) at the end of each line, as required by aML, and how n will
help the file to be written in different lines. This is important because aML does not
read lines if they have more than 80 characters, including spaces. If planning to use a
long list of explanatory variables, we must take this into account. We can easily resolve
the issue by organizing our variables into more groups (local macros) and then adding
file write data "‘levelx’" as many times as the number of groups created. It is
important to be organized: the groups of variables must be entered in the same order
that they were previously outfiled. Note that in the variables list, there are no aML

control variables such as, for example, structure.

2.2 Model specification

Once the dataset is prepared, we need to write the .aml file where the regressions are
specified. This is a little more complicated, so we will write it in parts that will be saved
as .dta files in Stata and later appended to create one single file.

At the beginning of the .aml file, aML needs to be told which dataset is to be used
and which regressor set for each of the equations is to be estimated. After that, any
desired option can be added (see Lillard and Panis [2003]). I include the line with
option variance-covariance matrix so that it is printed in the aML output. To
generate an intercept, write "var=1" because this is not assumed by aML. When not
willing to specify a constant, you may instead type "var= ".

clear
input str50 v1
"dsn = data.dat;"
"option variance-covariance matrix;"
"define regressor set Beta1;"
"var = 1"
end
save rsbeta1.dta, replace

clear
input str50 v1
"define regressor set Beta2;"
"var = 1"
end
save rsbeta2.dta, replace

clear
input str50 v1
";"
""
end
save semicolon.dta, replace

Next we need to specify the type of model we want to regress, the number of in-
tegration points, and the different error terms. Refer to the aML user’s guide (Lillard
and Panis 2003) for full details of the different possible models, how to specify the error
terms, and all the different options. For example, the following code indicates that
we have a simultaneous model with two probits with random effects that need to be
integrated out and are correlated across equations:

348 From Stata to aML

clear
input str50 v1
"define normal distribution;"
"dim=2;"
"number of integration points = 6;"
"name = eps1;"
"name = eps2;"
" "
"probit model;"
"data structure = 1;"
"outcome = dvar1;"
"model = regset Beta1 + intres(draw=1, ref=eps1);"
" "
"probit model;"
"data structure = 2;"
"outcome = dvar2;"
"model = regset Beta2 + intres(draw=1, ref=eps2);"
" "
"starting values;"
end
save estimation.dta, replace

Once the models have been specified, we need to write the list of parameters, whether
the parameter is to be estimated, and their starting values. To do so, we write a single
string (called all) that contains the required information and places blank spaces in
between. Because aML uses full information maximum likelihood with an iterative search
algorithm, we need to specify which parameters are to be estimated (T, true) and fixed
(F, false). In this example, I let the constants settle and then free up the parameters.
Because both models in this example have the same specification, we can write a loop.
If not, a specification for each model needs to be written.

forvalues i=1(1)2 {
clear
insheet using sv`i´.txt
drop if v2==.
generate str4 ft="FTTT"
replace ft="TTTT" if v1=="_cons"
order v1 ft v2
tostring v2, generate(v2a) format(%10.6f) force
drop v2
rename v2a v2
generate str4 blanc=" "
generate str50 all=substr(v1,1,.)+substr(blanc,1,.)+substr(ft,1,.)+ ///

substr(blanc,1,.)+substr(v2,1,.)
drop v1 ft v2
rename all v2
* Next two lines make the _cons of lnsigmau to drop
generate x=_n
drop if x==_N
drop x blanc
save values`i´.dta, replace

}

S. Ayllón 349

At the bottom of the file, we need to add the starting value of the standard deviation
of the random effects that are integrated out.

forvalues i=1(1)2 {
clear
insheet using eps`i´.txt
generate x=_n
keep if x==1
generate str10 blanc=" "
generate str4 v2="eps`i´"
generate str4 ft="FFTT"
tostring v1, generate(v1a) format(%10.6f) force
generate str50 all=substr(v2,1,.)+substr(blanc,1,.)+substr(ft,1,.)+ ///

substr(blanc,1,.)+substr(v1a,1,.)
keep all
save eps`i´.dta, replace

}

Finally, I add rho, which is the correlation between random effects of the different
equations. This needs to be modified accordingly: if it is believed to be positive, set a
positive number; if negative, do the opposite. One can always initialize it at 0.

clear
input str50 v1
"rho12 FFFT 0"
end
save rho.dta, replace

Note that four rounds of estimation are proposed in total: first, only the constants;
second, the parameters; third, the standard deviations of the random effects; and finally,
the correlation.

All that remains is to build the .aml file by appending its different parts: the
regressor sets (rsbeta) with the list of covariates (sv), the estimation specification and
errors structure (estimation), the starting values (values), and finally, the error terms
and the rho (eps, rho). I outfile this as an .aml file:

use rsbeta1.dta, clear
append using sv1.dta
append using semicolon.dta
append using rsbeta2.dta
append using sv2.dta
append using semicolon.dta
append using estimation.dta
append using values1.dta
append using values2.dta
append using eps1.dta
append using eps2.dta
append using rho.dta
append using semicolon.dta
outfile using estimate.aml, replace noquote wide

350 From Stata to aML

To remove unnecessary files from the computer, we delete all the parts that have
helped to compose the final .aml file:

forvalues i=1(1)2 {
erase sv`i´.txt
erase eps`i´.txt
erase rsbeta`i´.dta
erase values`i´.dta

}
erase rho.dta
erase semicolon.dta
erase estimation.dta

2.3 Model estimation

Now all we have to do is call aML within Stata by using the shell command, which will
open the Command Prompt window (DOS window) and close it when the regressions
are done.8 First, we will upload the data with the raw2aml command. Second, we will
estimate the regression with aml. And finally, we update the obtained results. At this
point, it is very important to make sure that the file data.r2a does not contain more
than 80 characters per line; otherwise, the data will not upload. If this is the case, you
can manually break up the lines or work with more groups of dependent variables (as
explained). The code reads as follows:

shell raw2aml -r data.r2a
shell aml -r estimate.aml
shell update -r estimate.out

After the model has been fit, you obtain the file data.sum, which gives a summary
of the data file, where we can check whether the data were read as expected. We also
obtain the file estimation.out, which contains the results, and a dataset in aML format
called (in our case) data.dat.

8. One can manually open aML and type the same lines (one by one) without sh at the beginning of
the statement. This way, the screen output can also be used if desired.

S. Ayllón 351

2.4 And, back to Stata

For convenience, you may wish to bring aML results back to Stata to perform postes-
timation tests or simply produce formatted tables.9 To do that, we need to create an
estimates table with the mktab utility in aML that will be imported into Stata with the
insheet command. Given that in aML, we cannot produce a table that contains coeffi-
cients and standard errors without significance asterisks, we need to keep the numerical
results with the substring command and then transform the string into numbers with
the real function in generate.10 After a few lines, we obtain a variable that contains
coefficients (coeff) and another with standard errors (sterror) (and, optionally, the
log likelihood if desired).

shell mktab -c estimate.out > estimates.txt

insheet using estimates.txt, comma clear
generate coef=substr(v2,1,7)
generate error=substr(v2,-6,5)
generate coeff=real(coef)
generate sterror=real(error)
replace sterror=sterror[_n+1]
drop if coeff==.
generate loglikelihood=coeff[_N] if _n==1
drop if _N==_n
keep coeff sterror loglikelihood
scalar ncoeff=_N
global nco=_N
save estimates.dta, replace

The exportation of the variance–covariance matrix is more cumbersome because,
unfortunately, aML does not produce an exportable table with the covariances.11 aML

prints the matrix in the output file but does so in blocks of five columns each. In what
follows, I exemplify how to deal with this problem for models that have between 10 and
15 parameters; however, the code needs to be adapted if the models have a smaller or
greater number of parameters.

9. I would like to thank an anonymous referee for suggesting the exportation of results back to Stata.
10. By default, aML results with mktab are written with four digits after the decimal point. This can

be changed using the -n option to increase or reduce precision. The creation of the substring with
the numerical values needs to be changed accordingly.

11. Optionally, you may decide not to bring the variance–covariance matrix back to Stata and simply
use the coefficients and the standard errors (as shown) given that some postestimation commands
do not require covariances. When posting the variance–covariance matrix (see below), you can
provisionally set covariances to 0.

352 From Stata to aML

First, we should insheet the aML output file into Stata (estimate.out) and drop
the lines that do not contain the variance–covariance matrix:

insheet line using estimate.out, clear
drop if line==""
generate byte tmp=sum(line=="BHHH-based variance-covariance matrix:")
drop if tmp==0
replace tmp=sum(line=="--- ///

---------------")
keep if tmp==0
drop tmp
list
drop in 1/2
drop if _n==ncoeff+1
local j 10
forvalues i=18(2)26 {

local j=`j´+1
drop if _n==`i´ & ncoeff==`j´

}
drop if _n==_N
drop if _n==_N

Second, we need to create as many variables as the covariance matrix has columns.
For the first five columns, it is very simple, but for the remainder, we need to relocate
the covariances. For example, aML would print the following matrix for a model with
six parameters:

varname var1 var2 var3 var4 var5

varname1 var1[1]
varname2 var1[2] var2[2]
varname3 var1[3] var2[3] var3[3]
varname4 var1[4] var2[4] var3[4] var4[4]
varname5 var1[5] var2[5] var3[5] var4[5] var5[5]
varname6 var1[6] var2[6] var3[6] var4[6] var5[6]
varname6 var1[7]

Thus we need to create a new variable (var6) that contains the variance of parameter 6,
which is actually located in var1[7]. A couple of loops can help deal with this for all
parameters:

generate x=_n
generate max=_N
generate str8 varname=word(line,1)
generate str12 var1=word(line,2)
generate str12 var2=word(line,3)
generate str12 var3=word(line,4)
generate str12 var4=word(line,5)
generate str12 var5=word(line,6)

forvalues i=6/$nco {
generate var`i´=""

}

generate diff=max-ncoeff+10-ncoeff
generate diff2=max-ncoeff

S. Ayllón 353

local j 5
local s 0
while `j´<=9 {

local j=`j´+1
local s=`s´+1
forvalues i=6/$nco {

local p=`i´+diff
replace var`j´=var`s´[`p´] in `i´

}
}
local j 10
local s 0
while `j´<=ncoeff-1 {

local j=`j´+1
local s=`s´+1
forvalues i=11/$nco {

local p=`i´+diff2
replace var`j´=var`s´[`p´] in `i´

}
}

When all the covariances have been relocated to their correct spots, we drop the
unnecessary lines and transform the matrix into numbers:

drop if _n>ncoeff
drop line x max
forvalues i=1(1)$nco {

generate vce`i´=real(var`i´)
}
keep varname vce*
save vce.dta, replace

Next the easiest method is to merge the new variables that contain aML results
into the dataset, and create a bhat matrix with the coefficients and a vce one with
the variances and covariances. Note how the previously created macros are useful for
naming the matrices columns and rows, distinguishing whether they belong to the first
or second equation.

use dataset.dta, clear
merge using estimates.dta
drop _m
merge using vce.dta
drop _m

foreach var of varlist `level1´ `level2a´ {
local equation1 "`equation1´ `var´_1"

}
foreach var of varlist `level1´ `level2b´ {

local equation2 "`equation2´ `var´_2"
}

Now we simply need to create the coefficients matrix and the variance–covariance
matrix from the variables with the mkmat command in Stata. In the case of bhat,
the matrix needs to be transposed. Also the upper triangle of the variance–covariance
matrix has to be completed.

354 From Stata to aML

mkmat coeff if coeff~=., matrix(bha)
mat bhat=bha´
mat colnames bhat = _cons_1 `equation1´ _cons_2 `equation2´ eps_1 eps_2 rho
mat list bhat

local covar ""
forvalues i=1(1)$nco {

local covar="`covar´ vce`i´"
}

mkmat `covar´ if varname~="", matrix(vce)
forvalues i=1/$nco {

forvalues j=2/$nco {
matrix vce[`i´,`j´]=vce[`j´,`i´]

}
}
mat rownames vce = _cons_1 `equation1´ _cons_2 `equation2´ eps_1 eps_2 rho
mat colnames vce = _cons_1 `equation1´ _cons_2 `equation2´ eps_1 eps_2 rho
mat list vce, nohalf

Finally, all we have to do is save both matrices in the Stata system. We can do that
with the ereturn post command. Now aML results become official estimates in Stata,
thus enabling the use of postestimation features.

ereturn post bhat vce
ereturn display

3 Other applications

aML supports different multilevel multiprocess models. Thus the code I am presenting
here can be adapted to different kinds of estimation. For example, let’s imagine that
instead of two random-effects probits, we need to jointly fit a random-effects linear model
and a random-effects probit model. In such a case, we would only need to make a few
changes. First, we would simply substitute xtprobit with xtreg in the regression that
saves the starting values and parameters list. Moreover, there would be no need to make
cons of lnsigmau drop, so we would simply type an asterisk in front of the line *drop
if x== N (remember, this is the part of the aml file called valuesx.dta). Finally,
when writing the file estimation.dta, we would substitute "probit model;" with
"continuous model;" and adapt the error structure in accordance with our research
question.12

4 Example

To illustrate how easy it is to move from Stata to aML (and back), let’s run a simple (and
näıve) example using a panel dataset in Stata (nlswork.dta) that contains information
on a subsample of young women, aged 14 to 26 in 1968, drawn from the National
Longitudinal Survey of Youth. Level 1 data are the individual (identified with idcode),
and level 2 data are time (year). Imagine that we are interested in explaining the

12. The part of the code that brings aML results back to Stata needs to be modified accordingly as
well.

S. Ayllón 355

probability of being married and the probability of belonging to a union. Moreover, we
want to control for unobserved heterogeneity by integrating out a random effect in each
equation and to allow these individual-specific effects to be freely correlated. Basically,
we are presuming that there are certain unobserved personality traits that affect each
outcome. Marriage (msp) and union are explained by the same covariates: year of birth
(birth yr) and race as time-invariant and age and the logarithm of wage (ln wage) as
time-varying. Furthermore, union is entered as an explanatory variable for marriage.

We apply the following code:

use http://www.stata-press.com/data/r12/nlswork

* time-invariant
local level1 ""
local level1 "`level1´ birth_yr"
local level1 "`level1´ race"

* time-variant
local level2a ""
local level2a "`level2a´ age"
local level2a "`level2a´ ln_wage"
local level2a "`level2a´ union"

* time-variant
local level2b ""
local level2b "`level2b´ age"
local level2b "`level2b´ ln_wage"

keep idcode year `level1´ `level2a´ `level2b´ msp union
label drop _all
foreach var of varlist `level1´ `level2a´ `level2b´ {

drop if `var´==.
}
drop if msp==.
drop if union==.

save dataset.dta, replace

* ***
* Runs regressions and saves starting values and list of variables.
* ***

xtprobit msp `level1´ `level2a´, i(idcode) intpoints(4)
estimates store m1
estout m1 using sv1.txt, replace style(tab) order(_cons) mlabels("") collabels("")
generate eps1=`e(sigma_u)´
outfile eps1 using eps1.txt if _N==_n, replace

preserve
clear
insheet using sv1.txt
drop if v2==.
drop v2
drop if v1=="_cons"
format v1 %15s
save sv1.dta, replace
restore

356 From Stata to aML

xtprobit union `level1´ `level2b´, i(idcode) intpoints(4)
estimates store m2
estout m2 using sv2.txt, replace style(tab) order(_cons) mlabels("") collabels("")
generate eps2=`e(sigma_u)´
outfile eps2 using eps2.txt if _N==_n, replace

preserve
clear
insheet using sv2.txt
drop if v2==.
drop v2
drop if v1=="_cons"
format v1 %15s
save sv2.dta, replace
restore

* ***
* Outfiles data for aML use.
* ***

generate structure = 1
sort idcode year
outfile idcode structure `level1´ `level2a´ msp using data1.txt, wide comma replace

replace structure = 2
sort idcode year
outfile idcode structure `level1´ `level2b´ union using data2.txt, wide ///

comma replace

keep idcode year
sort idcode year

outfile idcode using id.txt, wide comma replace

* ***
* Writes .r2a file that uploads data into aML.
* ***
clear
file open data using data.r2a, write replace
file write data "ascii data files = data1.txt" _n
file write data " data2.txt" _n
file write data ";" _n
file write data _n
file write data "id file = id.txt;" _n
file write data _n
file write data "level 1 var = " _n
file write data "`level1´" _n
file write data ";" _n
file write data _n
file write data "data structure = 1;" _n
file write data _n
file write data "level 2 var = " _n
file write data "`level2a´" _n
file write data "msp" _n
file write data ";" _n
file write data _n
file write data "data structure = 2;" _n
file write data _n
file write data "level 2 var = " _n
file write data "`level2b´" _n

S. Ayllón 357

file write data "union" _n
file write data ";" _n
file close data

* **
* Defines in aML language the first two lines that set the explanatory variables.
* String is set to 50 characters. If willing to use longer names, change format.
* **

clear
input str50 v1
"dsn = data.dat;"
"option variance-covariance matrix;"
"define regressor set Beta1;"
"var = 1"
end
save rsbeta1.dta, replace

clear
input str50 v1
"define regressor set Beta2;"
"var = 1"
end
save rsbeta2.dta, replace

clear
input str50 v1
";"
""
end
save semicolon.dta, replace

* **
* Defines in aML language the middle part of the .aml file that sets the
* integration points, random effects, etc.
* **

clear
input str50 v1
"define normal distribution;"
"dim=2;"
"number of integration points = 6;"
"name = eps1;"
"name = eps2;"
" "
"probit model;"
"data structure = 1;"
"outcome = msp;"
"model = regset Beta1 + intres(draw=1, ref=eps1) ;"
" "
"probit model;"
"data structure = 2;"
"outcome = union;"
"model = regset Beta2 + intres(draw=1, ref=eps2);"
" "
"starting values;"
end
save estimation.dta, replace

358 From Stata to aML

* ***
* The following defines the starting values list.
* I needed to create a final total string so that there is only one variable at
* the end that can be appended with the rest of the file.
* **
forvalues i=1(1)2 {

clear
insheet using sv`i´.txt
drop if v2==.
generate str4 ft="FTTT"
replace ft="TTTT" if v1=="_cons"
order v1 ft v2
tostring v2, generate(v2a) format(%10.6f) force
drop v2
rename v2a v2
generate str4 blanc=" "
generate str50 all=substr(v1,1,.)+substr(blanc,1,.)+substr(ft,1,.)+ ///

substr(blanc,1,.)+substr(v2,1,.)
drop v1 ft v2
rename all v2
* Next two lines make the _cons of lnsigmau to drop
generate x=_n
drop if x==_N
drop x blanc
save values`i´.dta, replace

}

* ***
* And, finally, random effects and rho´s.
* ***
forvalues i=1(1)2 {

clear
insheet using eps`i´.txt
generate x=_n
keep if x==1
generate str10 blanc=" "
generate str4 v2="eps`i´"
generate str4 ft="FFTT"
tostring v1, generate(v1a) format(%10.6f) force
generate str50 all=substr(v2,1,.)+substr(blanc,1,.)+substr(ft,1,.)+ ///

substr(blanc,1,.)+substr(v1a,1,.)
keep all
save eps`i´.dta, replace

}

clear
input str50 v1
"rho12 FFFT 0"
end
save rho.dta, replace

* ***
* The final .aml file.
* ***

use rsbeta1.dta, clear
append using sv1.dta
append using semicolon.dta
append using rsbeta2.dta
append using sv2.dta

S. Ayllón 359

append using semicolon.dta
append using estimation.dta
append using values1.dta
append using values2.dta
append using eps1.dta
append using eps2.dta
append using rho.dta
append using semicolon.dta

outfile using estimate.aml, replace noquote wide
* noquote specifies that strings not be outfiled in double quotes.

forvalues i=1(1)2 {
erase sv`i´.txt
erase eps`i´.txt
erase rsbeta`i´.dta
erase values`i´.dta

}
erase rho.dta
erase semicolon.dta
erase estimation.dta

clear

* Careful when adding more variables; lines may exceed 80 characters in .r2a.

shell raw2aml -r data.r2a
shell aml -r estimate.aml
shell update -r estimate.out

* **
* (Optional) If desired, the following code brings the results back to Stata.
* **

shell mktab -c estimate.out > estimates.txt

insheet using estimates.txt, comma clear
generate coef=substr(v2,1,7)
generate error=substr(v2,-6,5)
generate coeff=real(coef)
generate sterror=real(error)
replace sterror=sterror[_n+1]
drop if coeff==.
generate loglikelihood=coeff[_N] if _n==1
drop if _N==_n
keep coeff sterror loglikelihood
scalar ncoeff=_N
global nco=_N
save estimates.dta, replace

insheet line using estimate.out, clear
drop if line==""
generate byte tmp=sum(line=="BHHH-based variance-covariance matrix:")
drop if tmp==0
replace tmp=sum(line=="-- ///

------------------")
keep if tmp==0
drop tmp
list

360 From Stata to aML

drop in 1/2
drop if _n==ncoeff+1
local j 10
forvalues i=18(2)26 {

local j=`j´+1
drop if _n==`i´ & ncoeff==`j´

}
drop if _n==_N
drop if _n==_N
generate x=_n
generate max=_N
generate str8 varname=word(line,1)
generate str12 var1=word(line,2)
generate str12 var2=word(line,3)
generate str12 var3=word(line,4)
generate str12 var4=word(line,5)
generate str12 var5=word(line,6)

forvalues i=6/$nco {
generate var`i´=""

}

generate diff=max-ncoeff+10-ncoeff
generate diff2=max-ncoeff

local j 5
local s 0
while `j´<=9 {

local j=`j´+1
local s=`s´+1
forvalues i=6/$nco {

local p=`i´+diff
replace var`j´=var`s´[`p´] in `i´

}
}
local j 10
local s 0
while `j´<=ncoeff-1 {

local j=`j´+1
local s=`s´+1
forvalues i=11/$nco {

local p=`i´+diff2
replace var`j´=var`s´[`p´] in `i´

}
}

drop if _n>ncoeff
drop line x max
forvalues i=1(1)$nco{

generate vce`i´=real(var`i´)
}
keep varname vce*
save vce.dta, replace

use dataset.dta,clear
merge using estimates.dta
drop _m
merge using vce.dta
drop _m

S. Ayllón 361

foreach var of varlist `level1´ `level2a´ {
local equation1 "`equation1´ `var´_1"

}
foreach var of varlist `level1´ `level2b´ {

local equation2 "`equation2´ `var´_2"
}

mkmat coeff if coeff~=., matrix(bha)
mat bhat=bha´
mat colnames bhat = _cons_1 `equation1´ _cons_2 `equation2´ eps_1 eps_2 rho
mat list bhat

local covar ""
forvalues i=1(1)$nco {

local covar="`covar´ vce`i´"
}

mkmat `covar´ if varname~="", matrix(vce)
forvalues i=1/$nco {

forvalues j=2/$nco {
matrix vce[`i´,`j´]=vce[`j´,`i´]

}
}
mat rownames vce = _cons_1 `equation1´ _cons_2 `equation2´ eps_1 eps_2 rho
mat colnames vce = _cons_1 `equation1´ _cons_2 `equation2´ eps_1 eps_2 rho
mat list vce, nohalf

ereturn post bhat vce
ereturn display

After the process, these are the aML results in Stata:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons_1 2.3125 .3274141 7.06 0.000 1.67078 2.95422
birth_yr_1 -.031 .0062929 -4.93 0.000 -.0433338 -.0186662

race_1 -.8534 .0383275 -22.27 0.000 -.9285206 -.7782794
age_1 .0345 .0016174 21.33 0.000 .0313299 .0376701

ln_wage_1 -.1564 .0330606 -4.73 0.000 -.2211975 -.0916025
union_1 -.0891 .0344093 -2.59 0.010 -.156541 -.021659
_cons_2 -2.3221 .3689173 -6.29 0.000 -3.045165 -1.599035

birth_yr_2 -.0245 .0070922 -3.45 0.001 -.0384006 -.0105994
race_2 .5751 .0416893 13.79 0.000 .4933904 .6568096
age_2 -.0083 .0021321 -3.89 0.000 -.0124789 -.0041211

ln_wage_2 .9753 .0356511 27.36 0.000 .9054252 1.045175
eps_1 1.4076 .022059 63.81 0.000 1.364365 1.450835
eps_2 1.3215 .0271219 48.72 0.000 1.268342 1.374658

rho .0216 .01728 1.25 0.211 -.0122683 .0554683

362 From Stata to aML

5 Acknowledgments

I would like to thank Stan Panis for answering my questions about aML and helping
me to bring aML results back to Stata. I am also grateful to Stephen Jenkins for his
comments. Financial support from the Spanish project ECO2010-21668-C03-02 and XREPP

(Direcció General de Recerca) is greatly acknowledged.

6 References

Gini, R., and J. Pasquini. 2006. Automatic generation of documents. Stata Journal 6:
22–39.

Greenwood, D. 2006. WinBugs & Stata.
http://www.personal.leeds.ac.uk/˜hssdg/Stata.

Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288–
308.

———. 2007. Making regression tables simplified. Stata Journal 7: 227–244.

Jones, R. 2010. runmplus: Stata module to run Mplus from Stata. Statistical Software
Components S457154, Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s457154.html.

Leckie, G., and C. Charlton. 2013. runmlwin—a program to run the MLwiN multilevel
modelling software from within Stata. Journal of Statistical Software 52: 1–40.

Lillard, L. A., and C. W. A. Panis. 2003. aML Multilevel Multiprocess Statistical
Software, Version 2.0. Los Angeles, CA: EconWare.

Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2004. GLLAMM manual. Working
Paper 160, Division of Biostatistics, University of California–Berkeley.
http://www.bepress.com/ucbbiostat/paper160/.

Reardon, S. F. 2006. hlm: Stata module to invoke and run HLM v6 software from within
Stata. Statistical Software Components S448001, Department of Economics, Boston
College. http://econpapers.repec.org/software/bocbocode/s448001.htm.

Roodman, D. M. 2011. Fitting fully observed recursive mixed-process models with cmp.
Stata Journal 11: 159–206.

About the author

Sara Ayllón has a PhD in applied economics and works on the analysis of poverty dynamics
and their relationship with labor and demographic events. She is an assistant professor in the
Department of Economics at the University of Girona in Spain.

